## Study of the <sup>208</sup>Pb(<sup>48</sup>Ca,2n)<sup>254</sup>No reaction

J. B. Patin, K. E. Gregorich, V. Ninov, T. N. Ginter, N. K. Seward, and D. C. Hoffman

The <sup>208</sup>Pb(<sup>48</sup>Ca,2n)<sup>254</sup>No reaction was studied to obtain an excitation function that could be used to compare the operation of the Berkeley Gas-filled Separator (BGS) with other compound nucleus evaporation residue (EVR) separators around the world.

The calcium on lead reaction is used because the doubly magic projectile and target lead to a very low excitation energy in the compound nucleus of approximately 23 MeV, leading to a relatively large cross section of a few microbarns for the <sup>208</sup>Pb(<sup>48</sup>Ca,2n)<sup>254</sup>No reaction [1].

<sup>48</sup>Ca<sup>10+</sup> was accelerated by the 88" Cyclotron at an average beam current of approximately 200 enA. The target system consisted of a rotating wheel composed of nine 453 μg/cm<sup>2</sup> <sup>208</sup>Pb targets. Energies in the center of the <sup>208</sup>Pb target varied in the lab frame from 210.2 MeV to 222.7 MeV. After the evaporation residues left the target, they traversed the BGS at a pressure of 0.742 torr of He and were focused onto the focal plane detector. The evaporation residues and  $\alpha$ -decay from <sup>254</sup>No (8.09 MeV) were detected with a positionsensitive silicon-strip detector. The production cross section at each energy was obtained from the integrated <sup>254</sup>No peak, average beam integral and the known BGS efficiency of 45% and detector efficiency of 50% (Figure 1). results look good when compared to HIVAP evaporation codes and are similar to previous research [1].

The half-life of  $^{254}$ No (t½ =  $55 \pm 3$  s [2]) was also determined. By examining correlations in time and position between evaporation residue implantation in the silicon-strip detector and 8.09 MeV $\alpha$ -decays, the decay curve in figure 2 was generated. An MLDS (Maximum Likelihood of Decay by the Simplex method) fit to the decay curve gives a  $^{254}$ No half-life of  $50 \pm 6$  seconds. This agrees with the literature value of  $55 \pm 3$  seconds.

## References

- 1. H.W. Gäggeler et al., GSI Scientific Report 1988, 18 (1989).
- 2. LBNL/LUND Table of Radioactive Isotopes 1999, http://nucleardata.nuclear.lu.se/nucleardata/toi/

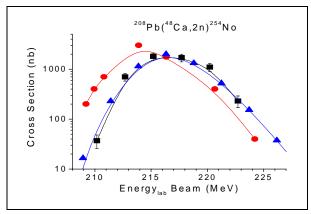



Fig. 1. Excitation function for the <sup>208</sup>Pb(<sup>48</sup>Ca,2n)<sup>254</sup>No reaction. Experimental data (black squares), previous experimental data (red circles), and HIVAP predictions (blue triangles) are noted.

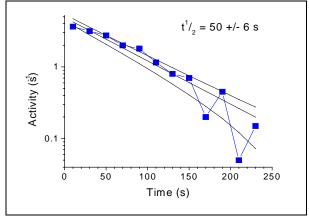



Fig. 2. Decay curve and MLDS fit to the  $^{254}$ No EVR –  $\alpha$ -correlation data.